Multiplicity of solutions for fractional Schrödinger equations with perturbation
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملexistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
in this paper, we consider a coupled system of nonlinear fractional differential equations (fdes), such that bothequations have a particular perturbed terms. using emph{leray-schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
Numerical study of fractional nonlinear Schrödinger equations.
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2015
ISSN: 1687-2770
DOI: 10.1186/s13661-015-0317-5